期刊简介
本刊是全国生物医学工程工作人才沟通学术思想、交流学术经验的园地。报道有创造性的最新科研论文和研究简讯。包括学科有:人工器官和生物医用材料,生物效应,生物信息与控制;生物力学;生物医学仪器;中医工程;临床工程等。读者对象是国内外生物医学工程学工作者、医务工作者以及其他从事自然科学研究和有关工程技术人员。
往期目录
-
1994
-
1998
-
1999
-
2000
-
2001
-
2002
-
2003
-
2004
-
2005
-
2006
-
2007
-
2008
-
2009
-
2010
-
2011
-
2012
-
2013
-
2014
-
2015
-
2016
-
2017
-
2018
首页>中国生物医学工程学报杂志

- 杂志名称:中国生物医学工程学报杂志
- 主管单位:中国科学技术协会
- 主办单位:中国生物医学工程学会
- 国际刊号:0258-8021
- 国内刊号:11-2057/R
- 出版周期:双月刊
期刊荣誉:中国期刊全文数据库(CJFD)期刊收录:医学文摘, 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 文摘与引文数据库, 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, SA 科学文摘(英), JST 日本科学技术振兴机构数据库(日), CA 化学文摘(美), 北大核心期刊(中国人文社会科学核心期刊), 知网收录(中)
基于小波分解和支持向量机的P300识别算法
杨立才;李金亮;姚玉翠;李光林
关键词:脑-机接口, P300, 小波分解, 支持向量机
摘要:针对支持向量机方法在P300识别中训练和识别速度相对较慢的不足,本研究提出了一种将小波分解与支持向量机相结合的P300识别方法.该方法通过小波分解实现脑电信号的特征提取,同时利用Span估计方法实现支持向量机优参数的快速选择;然后借助支持向量机良好的分类性能实现P300的识别.本研究在BCICompetition 2003的P300实验数据集上对该方法进行了验证,结果表明,与传统支持向量机算法相比,本算法具有更高的训练和识别速度,并且在5次重复实验时达到了100%的识别准确率.
友情链接