期刊简介

本刊是全国生物医学工程工作人才沟通学术思想、交流学术经验的园地。报道有创造性的最新科研论文和研究简讯。包括学科有:人工器官和生物医用材料,生物效应,生物信息与控制;生物力学;生物医学仪器;中医工程;临床工程等。读者对象是国内外生物医学工程学工作者、医务工作者以及其他从事自然科学研究和有关工程技术人员。

首页>中国生物医学工程学报杂志
  • 杂志名称:中国生物医学工程学报杂志
  • 主管单位:中国科学技术协会
  • 主办单位:中国生物医学工程学会
  • 国际刊号:0258-8021
  • 国内刊号:11-2057/R
  • 出版周期:双月刊
期刊荣誉:中国期刊全文数据库(CJFD)期刊收录:医学文摘, 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 文摘与引文数据库, 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, SA 科学文摘(英), JST 日本科学技术振兴机构数据库(日), CA 化学文摘(美), 北大核心期刊(中国人文社会科学核心期刊), 知网收录(中)
中国生物医学工程学报杂志2007年第01期

基于支持向量回归方法的蛋白残基可溶性预测

许文龙;李骜;王明会;江朝晖;冯焕清

关键词:相对可溶性, 支持向量机, 机器学习, 蛋白质结构预测, 生物信息学
摘要:介绍了一种从蛋白质序列预测残基相对可溶性的新方法.该方法基于支持向量回归,并将序列局部信息作为输入.不同于先前的大部分预测方法仅对特定的蛋白残基相对可溶性进行状态分类,该方法预测了相对可溶性的连续值,从而比状态分类保留了蛋白质三维结构的更多信息.本研究对RS-126,Manesh-215和CB-513三个数据集进行了测试,通过比较不同的参数及窗宽模型来获得佳结果,采用平均绝对误差、相关系数等参数来衡量预测效果,同时与多层反馈神经网络方法(RVP-Net)的实验结果比较,在3-fold情况下三个数据集预测结果的平均绝对误差均有降低,相关系数均有提高.另外,该算法采用了多序列比对作为输入,效果比单序列有所提高.采用该方法,对CB-513数据集平均绝对误差可以达到16.8%、相关系数为0.562,而用RVP-Net方法分别为18.8%和0.480.这些结论表明支持向量回归方法是蛋白质序列分析的一种有效工具.