期刊简介
本刊是全国生物医学工程工作人才沟通学术思想、交流学术经验的园地。报道有创造性的最新科研论文和研究简讯。包括学科有:人工器官和生物医用材料,生物效应,生物信息与控制;生物力学;生物医学仪器;中医工程;临床工程等。读者对象是国内外生物医学工程学工作者、医务工作者以及其他从事自然科学研究和有关工程技术人员。
往期目录
-
1994
-
1998
-
1999
-
2000
-
2001
-
2002
-
2003
-
2004
-
2005
-
2006
-
2007
-
2008
-
2009
-
2010
-
2011
-
2012
-
2013
-
2014
-
2015
-
2016
-
2017
-
2018
首页>中国生物医学工程学报杂志

- 杂志名称:中国生物医学工程学报杂志
- 主管单位:中国科学技术协会
- 主办单位:中国生物医学工程学会
- 国际刊号:0258-8021
- 国内刊号:11-2057/R
- 出版周期:双月刊
期刊荣誉:中国期刊全文数据库(CJFD)期刊收录:医学文摘, 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 文摘与引文数据库, 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, SA 科学文摘(英), JST 日本科学技术振兴机构数据库(日), CA 化学文摘(美), 北大核心期刊(中国人文社会科学核心期刊), 知网收录(中)
构建基于小波熵的自训练半监督支持向量机分类模型评价老年人步态
吴建宁;伍滨
关键词:步态分析, 半监督学习, 支持向量机, 小波熵, 老年人
摘要:研究应用半监督学习算法分析未标注步态数据评价老年人步态,提出基于小波熵的自训练半监督支持向量机步态分类模型,通过小波熵从未标注步态数据中选取为每次自训练步态分类模型所需具信息量的标注样本,有效获取步态数据类别间和步态数据内在的“有价值”的步态变异信息,提高步态分类器的泛化性能.首先采用10名老年人和10名青年人步态数据构建支持向量机分类模型,然后对120名不同年龄组未标注步态数据分类预测,依据小波熵选取样本数据,逐步添加更新步态样本训练集,自训练支持向量机分类模型.实验结果表明,本算法较准确鉴别青年和老年人步态模式(分类正确率90%),比基于有监督学习的支持向量机步态分类算法正确率提高近5%,有效改善支持向量机步态分类算法性能,有望为临床提供一个评价老年人步态的新方法.
友情链接