期刊简介

本刊是全国生物医学工程工作人才沟通学术思想、交流学术经验的园地。报道有创造性的最新科研论文和研究简讯。包括学科有:人工器官和生物医用材料,生物效应,生物信息与控制;生物力学;生物医学仪器;中医工程;临床工程等。读者对象是国内外生物医学工程学工作者、医务工作者以及其他从事自然科学研究和有关工程技术人员。

首页>中国生物医学工程学报杂志
  • 杂志名称:中国生物医学工程学报杂志
  • 主管单位:中国科学技术协会
  • 主办单位:中国生物医学工程学会
  • 国际刊号:0258-8021
  • 国内刊号:11-2057/R
  • 出版周期:双月刊
期刊荣誉:中国期刊全文数据库(CJFD)期刊收录:医学文摘, 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 文摘与引文数据库, 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, SA 科学文摘(英), JST 日本科学技术振兴机构数据库(日), CA 化学文摘(美), 北大核心期刊(中国人文社会科学核心期刊), 知网收录(中)
中国生物医学工程学报杂志2013年第01期

运用近邻传播聚类分析进行SELDI-TOF蛋白质谱特征选择

杨合龙;祝磊;韩斌;厉力华;郑智国;孟旭莉

关键词:蛋白质质谱, 近邻传播聚类分析, 特征选择, 生物标志物
摘要:针对如何有效分析高通量SELDI-TOF质谱数据以及筛选与肿瘤相关的蛋白质位点,提出一种基于近邻传播聚类分析的特征选择方法.首先利用t-test对SELDI数据进行初筛,然后利用近邻传播聚类分析以及零空间LDA对数据进行降维和去相关处理,后采用SVM-RFE进行特征选择,筛选出与肿瘤判别相关的蛋白质位点.利用SVM、KNN、NB及J4.8等4个分类器,估算算法的分类性能.结果表明,在卵巢癌公共数据集OC-WCX2a和OC-WCX2b以及浙江省肿瘤医院乳腺癌数据集BC-WCX2a上显示该算法,在上述3个数据集中分类率分别达到96.43%、99.66%、90.88%,敏感性分别达到97.00%、100%、96.17%,特异性分别达到95.85%、99.08%、81.92%,并分别挑选出与肿瘤判别相关的10个蛋白位点.所提出的算法能够获得较好的分类率,有效提取出具有较好判别效果的蛋白质谱位点,有助于癌症的辅助诊断.