期刊简介

本刊是全国生物医学工程工作人才沟通学术思想、交流学术经验的园地。报道有创造性的最新科研论文和研究简讯。包括学科有:人工器官和生物医用材料,生物效应,生物信息与控制;生物力学;生物医学仪器;中医工程;临床工程等。读者对象是国内外生物医学工程学工作者、医务工作者以及其他从事自然科学研究和有关工程技术人员。

首页>中国生物医学工程学报杂志
  • 杂志名称:中国生物医学工程学报杂志
  • 主管单位:中国科学技术协会
  • 主办单位:中国生物医学工程学会
  • 国际刊号:0258-8021
  • 国内刊号:11-2057/R
  • 出版周期:双月刊
期刊荣誉:中国期刊全文数据库(CJFD)期刊收录:医学文摘, 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 文摘与引文数据库, 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, SA 科学文摘(英), JST 日本科学技术振兴机构数据库(日), CA 化学文摘(美), 北大核心期刊(中国人文社会科学核心期刊), 知网收录(中)
中国生物医学工程学报杂志2014年第06期

基于马尔科夫切换过程的运动想象信号分类

吴俊;杨雅;俞祝良;顾正晖;李远清

关键词:运动想象, 脑机接口, 马尔科夫切换, AR模型, 信号分类
摘要:隐马尔科夫模型(HMM)在脑机接口(BCI)领域中已经得到很好的应用,尤其是在运动想象(MI)信号的分类中.但是,很多传统的方法只是利用隐马尔科夫模型描述信号的动态特性,再根据观测数据求得模型参数,然后进行信号分类.由于脑电信号低信噪比、高维数和状态复杂的特点,在研究中先用分层Dirichlet过程(HDP)描述MI信号,利用HDP自聚类特性,然后使用AR模型描述MI信号的时间特性,后结合马尔科夫切换过程(MSP)描述MI信号的动态特性,以此来充分地描述MI信号.随后对实验室采集的数据和2003年BCI国际大赛的部分数据,使用HDP-AR-HMM模型对MI信号分类,获得很好的分类效果,准确率分别是99.00%、92.00%和72.46%.实验结果表明,所提出的方法可以取得更好的运动想象信号分类.