期刊简介
本刊是全国生物医学工程工作人才沟通学术思想、交流学术经验的园地。报道有创造性的最新科研论文和研究简讯。包括学科有:人工器官和生物医用材料,生物效应,生物信息与控制;生物力学;生物医学仪器;中医工程;临床工程等。读者对象是国内外生物医学工程学工作者、医务工作者以及其他从事自然科学研究和有关工程技术人员。
往期目录
-
1994
-
1998
-
1999
-
2000
-
2001
-
2002
-
2003
-
2004
-
2005
-
2006
-
2007
-
2008
-
2009
-
2010
-
2011
-
2012
-
2013
-
2014
-
2015
-
2016
-
2017
-
2018
首页>中国生物医学工程学报杂志

- 杂志名称:中国生物医学工程学报杂志
- 主管单位:中国科学技术协会
- 主办单位:中国生物医学工程学会
- 国际刊号:0258-8021
- 国内刊号:11-2057/R
- 出版周期:双月刊
期刊荣誉:中国期刊全文数据库(CJFD)期刊收录:医学文摘, 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 文摘与引文数据库, 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, SA 科学文摘(英), JST 日本科学技术振兴机构数据库(日), CA 化学文摘(美), 北大核心期刊(中国人文社会科学核心期刊), 知网收录(中)
基于极限学习机的跌倒检测分类识别研究
王之琼;曲璐渲;隋雨彤;鲍楠;康雁
关键词:极限学习机, 跌倒检测, BP神经网络, 支持向量机
摘要:由于年龄和身体条件的限制,在老年人群中跌倒是非常普遍的现象.因此,根据老年人跌倒的运动特征,远程监测他们在各个时间段的状态,以便在其摔倒或突发状况时及时采取措施显得尤为重要.针对人体运动状态进行监测,分析人体运动学特征,提出基于极限学习机的跌倒检测算法.运用三维加速度传感器采集人体的三维加速度值,建立跌倒检测特征模型.在此基础上,建立基于极限学习机的跌倒检测分类器,完成对老年人的计算机辅助跌倒检测.实验数据共540例样本,选用了不同数量的训练集和测试集,其中440例作为训练数据,其余100例为测试数据.测试结果表明,准确率为93%,敏感度为87.5%,特异性为91.7%,具有良好的分类性能.在对分类训练的运行时间方面,基于极限学习机的跌倒检测方法与传统的机器学习方法相比具有明显优势.
友情链接