期刊简介

本刊是全国生物医学工程工作人才沟通学术思想、交流学术经验的园地。报道有创造性的最新科研论文和研究简讯。包括学科有:人工器官和生物医用材料,生物效应,生物信息与控制;生物力学;生物医学仪器;中医工程;临床工程等。读者对象是国内外生物医学工程学工作者、医务工作者以及其他从事自然科学研究和有关工程技术人员。

首页>中国生物医学工程学报杂志
  • 杂志名称:中国生物医学工程学报杂志
  • 主管单位:中国科学技术协会
  • 主办单位:中国生物医学工程学会
  • 国际刊号:0258-8021
  • 国内刊号:11-2057/R
  • 出版周期:双月刊
期刊荣誉:中国期刊全文数据库(CJFD)期刊收录:医学文摘, 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 文摘与引文数据库, 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, SA 科学文摘(英), JST 日本科学技术振兴机构数据库(日), CA 化学文摘(美), 北大核心期刊(中国人文社会科学核心期刊), 知网收录(中)
中国生物医学工程学报杂志2015年第02期

复杂网络主成分分析的分类方法在音乐家白质可塑性研究中的应用

李建福;罗程;董立;尧德中

关键词:主成分分析(PCA), 支持向量机(SVM), 弥散加权成像(DWI), 脑网络
摘要:人脑在多种时间和空间尺度上都是复杂网络,而复杂网络中往往包含着大量的连接信息.主成分分析(PCA)方法主要被用于从大量信息中提取重要特征,因而可以被用于探寻复杂网络中的一些重要信息.众所周知,音乐家是研究训练导致的脑可塑性问题的一个理想模型,探求音乐家脑网络的可塑性变化是非常有意义的.首先通过基于弥散加权成像(DWI)数据的纤维束追踪,构建了16位音乐家与16位非音乐家的脑白质结构网络;然后对两组人的整体脑网络进行了PCA分析,进而对得到的每个主成分做支持向量机(SVM)分类处理,得到分类效果好的主成分;终找出对此主成分贡献前1%的连接即为音乐家相对于非音乐家在大脑白质结构网络上发生改变的主要连接.本方法为组间复杂网络对比分析提供了一种基于PCA分类的新思路.基于上述思路,对于音乐家与非音乐家的脑白质结构网络对比分析,表明音乐家在运动、听觉、情绪和记忆等功能脑区表现出更高的脑区间信息传递效率;进而扩展了在网络层面对长期音乐训练改变音乐家白质可塑性问题的理解.