期刊简介

本刊是全国生物医学工程工作人才沟通学术思想、交流学术经验的园地。报道有创造性的最新科研论文和研究简讯。包括学科有:人工器官和生物医用材料,生物效应,生物信息与控制;生物力学;生物医学仪器;中医工程;临床工程等。读者对象是国内外生物医学工程学工作者、医务工作者以及其他从事自然科学研究和有关工程技术人员。

首页>中国生物医学工程学报杂志
  • 杂志名称:中国生物医学工程学报杂志
  • 主管单位:中国科学技术协会
  • 主办单位:中国生物医学工程学会
  • 国际刊号:0258-8021
  • 国内刊号:11-2057/R
  • 出版周期:双月刊
期刊荣誉:中国期刊全文数据库(CJFD)期刊收录:医学文摘, 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 文摘与引文数据库, 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, SA 科学文摘(英), JST 日本科学技术振兴机构数据库(日), CA 化学文摘(美), 北大核心期刊(中国人文社会科学核心期刊), 知网收录(中)
中国生物医学工程学报杂志2018年第06期

基于联合决策卷积神经网络的光学相干断层扫描图像自动分类

王翀;何兴鑫;方乐缘;郭斯羽;陈向东;聂辅娇

关键词:光学相干断层扫描成像, 图像分类, 卷积神经网络, 联合决策
摘要:光学相干断层扫描(OCT)技术能实现视网膜的高分辨率三维层析成像,对视网膜疾病类型的诊断和发展阶段的分析具有至关重要的作用.临床基于OCT图像的视网膜疾病诊断主要依靠眼科医生对图像中病变结构的分析,这一人工分析过程不仅耗时而且易产生主观的误判.研究视网膜疾病的自动分析和诊断技术将极大减轻眼科医生的工作量,是实现高效诊疗的有效途径.针对视网膜OCT图像自动分类,构建一种联合决策的卷积神经网络分类模型.该模型利用卷积神经网络从原始输入OCT图像中自动地学习不同层级的特征,同时在网络多个卷积层上设计多个决策层,这些决策层能够根据网络中不同尺度的特征图分别对OCT图像分类,后模型融合所有决策层的分类结果做出终决策.在Duke数据集(3 231张OCT图像)上的实验结果表明,基于多层级特征联合决策的卷积神经网络分类模型对正常视网膜、视网膜年龄相关性黄斑变性和视网膜黄斑水肿的平均识别准确率达到94.5%,灵敏性达到90.5%,特异性达到95.8%.在HUCM数据集(4 322张OCT图像)上的实验结果表明,基于多层级特征联合决策的卷积神经网络分类模型的平均识别准确率达到89.6%,灵敏性达到88.8%,特异性达到90.8%.充分利用卷积神经网络中丰富的多层级特征,能够有效地对视网膜OCT图像实现准确的分类,为临床上视网膜疾病的辅助诊断提供技术支撑.