期刊简介

本刊是全国生物医学工程工作人才沟通学术思想、交流学术经验的园地。报道有创造性的最新科研论文和研究简讯。包括学科有:人工器官和生物医用材料,生物效应,生物信息与控制;生物力学;生物医学仪器;中医工程;临床工程等。读者对象是国内外生物医学工程学工作者、医务工作者以及其他从事自然科学研究和有关工程技术人员。

首页>中国生物医学工程学报杂志
  • 杂志名称:中国生物医学工程学报杂志
  • 主管单位:中国科学技术协会
  • 主办单位:中国生物医学工程学会
  • 国际刊号:0258-8021
  • 国内刊号:11-2057/R
  • 出版周期:双月刊
期刊荣誉:中国期刊全文数据库(CJFD)期刊收录:医学文摘, 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 文摘与引文数据库, 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, SA 科学文摘(英), JST 日本科学技术振兴机构数据库(日), CA 化学文摘(美), 北大核心期刊(中国人文社会科学核心期刊), 知网收录(中)
中国生物医学工程学报杂志2018年第04期

肿瘤参数属性偏序结构可视化实现乳腺癌诊断

梁怀新;宋佳霖;郑存芳;洪文学

关键词:LASSO, 增量学习, 属性偏序结构图, 可视化, 乳腺癌诊断
摘要:为实现乳腺癌数据规则可视化,提出一种基于Lasso和增量学习结合的、以改进的属性偏序结构图为可视化工具的乳腺癌诊断规则提取方法.采用乳腺癌数据为数据源基础上算法分为4步:首先使用Lasso方法进行特征选择实现降维,在9个特征中选出前4个关联度大的特征;其次进行基于Gini指数的连续数据粒化,通过增量学习方式动态生成形式背景;再次融合二次Lasso筛选,将维数由17降为3;后使用新的基于基尼指数和覆盖对象的行列优化方法生成属性偏序结构图可视化规则,提取出规则7条.将数据处理结果与主流分类器对比,结果表明,基于该算法的规则提取实现96.52%的诊断准确率,均高于随机森林(94.25%)、Adaboost(90.00%)、1NN(91.33%)、3NN(90.67%)、支持向量机算法(95.00%).后采用不同增量比例(10% ~ 90%)数据验证增量学习算法效果,表明顺序学习数据量达到30%时模式已经完备,数据量在20%时准确率已经接近支持向量机算法,证明该方法是一种用于诊断可视化的规则发现的有效手段.