期刊简介

本刊是全国生物医学工程工作人才沟通学术思想、交流学术经验的园地。报道有创造性的最新科研论文和研究简讯。包括学科有:人工器官和生物医用材料,生物效应,生物信息与控制;生物力学;生物医学仪器;中医工程;临床工程等。读者对象是国内外生物医学工程学工作者、医务工作者以及其他从事自然科学研究和有关工程技术人员。

首页>中国生物医学工程学报杂志
  • 杂志名称:中国生物医学工程学报杂志
  • 主管单位:中国科学技术协会
  • 主办单位:中国生物医学工程学会
  • 国际刊号:0258-8021
  • 国内刊号:11-2057/R
  • 出版周期:双月刊
期刊荣誉:中国期刊全文数据库(CJFD)期刊收录:医学文摘, 万方收录(中), 统计源核心期刊(中国科技论文核心期刊), CSCD 中国科学引文数据库来源期刊(含扩展版), 文摘与引文数据库, 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, SA 科学文摘(英), JST 日本科学技术振兴机构数据库(日), CA 化学文摘(美), 北大核心期刊(中国人文社会科学核心期刊), 知网收录(中)
中国生物医学工程学报杂志2018年第04期

基于新型深度全卷积网络的肝脏CT影像三维区域自动分割

孙明建;徐军;马伟;张玉东

关键词:肝脏分割, 深度全卷积网络, 条件随机场
摘要:肝脏分割对于肝肿瘤肝段切除及肝移植体积测量具有重要的临床价值.由于在CT影像中肝脏与邻近脏器的灰度值相似性很高,因此对肝脏区域的三维自动分割是一项具有挑战性的难题.为解决精准肝脏分割的问题,提出一种新型的深度全卷积网络结构3 DUnet-C2.该结构充分利用肝脏CT图像的三维空间信息,并有效结合肝脏区域的浅层特征和深层特征.特别地,还提出一种新的3DUnet-C2网络训练策略,通过选取清晰图像,并从图像中截取肝脏区域作为样本进行训练的方式,得到初步3DUnet-C2模型权重,并使用该权重来初始化3DUnet-C2的网络参数,从而使网络达到收敛.后,针对3DUnet-C2网络分割肝脏边界不精准的问题,在原有3DUnet-C2网络模型的基础上,运用三维条件随机场构建3DUnet-C2-CRF模型来优化肝脏分割边界.为了验证所提出三维分割模型的性能,从ISBI2017 Liver Tumor Segmentation Challenge的数据集中选取100张CT图像用于训练、验证和测试,3DUnet-C2-CRF模型在随机选取的20张测试集上的分割准确率的Dice系数为96.9%,高于3DUnet和Vnet模型的Dice系数.实验结果表明,3DU net-C2-CRF模型具有更好的特征表达能力以及更强的泛化性能,从而可提升模型的分割准确率.